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Orthogonal Range Searching

• 1D:

P(n) = O(n log n),   S(n) = O(n),   Q(n) = O(log n  [+ k]) 

• 2D??

succ



Method 0:  k-d Tree

• Divide by median-x,
• Then by median-y,
• Then by median-x, Etc.

S(n) = O(n)
P(n) = 2 P(n/2) + O(n) 

⇒ O(n log n)
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• Q(n) = O(# cells crossing ∂q)
= O(4 · # cells crossing a line)

• Z(n) = 2 Z(n/4) + O(1)
⇒ O(n1/2)

• Rmk: not good!
& worse in higher-D:
Z(n) = 2d-1 Z(n/2d) + O(1)   ⇒ O(n1-1/d)

q

q
Z(n)



Method 1:  Range Tree

• Store points in sorted y-order 
• Divide by median-x only
• Recurse on left & right

S(n) = 2S(n/2) + O(n)

⇒ O(n log n)

P(n) = 2P(n/2) + O(n log n) 

⇒ O(n log2 n)
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• 3-sided query:
Q3side(n) = Q3side(n/2) + O(1)

or Q3side(n/2) + O(log n)

⇒ Q3side(n) = O(log2 n)

• General query:
Q(n) = Q(n/2) + O(1)

or 2 Q3side(n/2) + O(1)

⇒ Q(n) = O(log2 n)

search in y-sorted list

O(log2 n)

by adding pointers between layers
(special case of “fractional cascading”)
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Higher-D

• Sd(n) = 2Sd(n/2) + Sd-1(n)   

⇒ Sd(n) = O(Sd-1(n) log n)    ⇒ Sd(n) = O(n logd-1 n)
• Qd(n) = O(Qd-1(n) log n) ⇒ Qd(n) = O(logd-1 n)



• Rmks: 
– Example of “multi-level” data structure
– Dynamic:  query/update time O(logd n) by standard 

balanced tree techniques

– (Mild) trade-off:  by degree-b range tree
S(n) = O(n (logbn)d-1),  Q(n) = O((b logbn)d-1)

or S(n) = O(n (b logbn)d-1), Q(n) = O(log n (logbn)d-2)

O(logd-1n loglog n) 
by dynamic fractional cascading



Recap:

• Orthogonal range searching:
O(n logd-1 n) space,  O(logd-1 n) time

Next:

• Improvements, by starting with better base cases 
(1D, 2D, 3D)??



Orthogonal Range Queries:
3D Reporting

(Mon. Morning II)



• Goal: 3D reporting 
O(n polylog n) space,  O(loglog U + k) time?

• Warm-up:  2D dominance emptiness

⇒ 1D predecessor search

“staircase”
of maxima



• 3D dominance emptiness

⇒ 2D orthogonal point location

“staircase”
of maxima



Orthogonal 2D Point Location

Store n disjoint rectangles in 2D
s.t. can locate rectangle 

containing query pt

• Previous methods: (Dietz’89/de Berg-van Kreveld-Snoeyink’95) 
O(n) space,  O((loglog U)2) time

• Brand new method: (Chan’11…)
O(loglog U) time!

[non-orthogonal pt location:
wait till Wed. (John)…]



Recursive Method: 1st Attempt

• Assume universe is W x H (initially W = H = U)
• Idea: use n1/2 x n1/2 grid, like Alstrup-Brodal-Rauhe

(column width W/n1/2, row height H/n1/2)

• For each column/row, 
recurse on all rectangles that have 
a vertex inside the column/row
(each rectangle stored ≤ 4 times)

• For each grid cell, remember in table
if it is covered by a rectangle, or 
if a horizontal or vertical edge cuts thru it

• Q(n,W,H)  = O(1) +  max{ Q(ni, W/n1/2, H), Q(nj, W, H/n1/2) }

1 recursive call only!locate grid cell



• Q(n,W,H)  = O(1) +  max{ Q(ni, W/n1/2, H), Q(nj, W, H/n1/2) }

• Rmks:
– as n gets smaller relative to W,H,  recursion doesn’t 

shrink W,H as much…
– could apply rank space reduction to equalize n & W,H

but cost extra loglog factor due to van Emde Boas!



Recursive Method: 2nd Attempt

• Idea: imitate van Emde Boas
divide into  W1/2 columns
(of width W1/2 )

• Build hash table for D = all “nonempty” columns
• Recurse w. rounded input 

(universe W1/2 x H)
(each rectangle stored ≤ 2 times)

• Q(n,W,H)  = O(1) +  Q(n, nW1/2, H)

+   Recurse on universe with
empty columns removed

(universe nW1/2 x H)



• Q(n,W,H)  =  O(1) +  Q(n, nW1/2, H)

• Or  Q(n,W,H)  =  O(1) +  Q(n, n, nH1/2)

• Rmk: but this recursion can’t shrink W,H to const!



Summary So Far…

• Method 1: 
Q(n,W,H)  =  O(1) +  max{ Q(ni, W/n1/2, H), Q(nj, W, H/n1/2) }

• Method 2a:
Q(n,W,H)  =  O(1) +  Q(n, nW1/2, H)

• Method 2b:
Q(n,W,H)  =  O(1) +  Q(n, n, nH1/2)

• Final Method: just combine!!
– If n ≥ W1/3 & n ≥ H1/3 then Method 1
– If n < W1/3 then Method 2a;  if n < H1/3 then Method 2b

Q(n,W,H)  =  O(1) +  max{ Q(ni, W
5/6, H), Q(nj, W, H5/6) }



Q(n,W,H)  =  O(1) +  max{ Q(ni, W
5/6, H), Q(nj, W, H5/6) }

⇒ O(loglog W + loglog H)  = O(loglog U)

• S(n) =  O(4O(loglog U) n)  = O(n polylog U)

• Rmk: can reduce space to O(n) by more work…



In Conclusion…

• 3D dominance emptiness:
O(n polylog n) space, O(loglog U) time

• 3D dominance reporting: 
similarly, w. additional ideas (Tues. afternoon),
O(n polylog n) space, O(loglog U + k) time

⇒ 3D general reporting:
by adding sides w. 3 extra log factors in space,
O(n polylog n) space, O(loglog U + k) time
[can save space by Alstrup-Brodal-Rauhe idea (Karpinski-Nekrich’10)…]



• Higher-D reporting:
by range trees w. d-3 extra log factors in space & time,
O(n polylog n) space, O(logd-3 n loglog n + k) time

by degree-b range trees w. b=logε n,
O(n polylog n) space, O((log n/loglog n)d-3 loglog n + k) time

current record query time!

End of Orthogonal Range
Query Upper Bounds

[why not O(loglog U) in 4D?? wait for Tues. (Mihai)…]



Non-Orthogonal Range Queries

(Mon. Afternoon II + 
Tues. Afternoon I + II)



Simplex Range Searching

• An illustrative case: 2D halfplane counting



History in 2D

P(n) S(n) Q(n)
• Willard’82 n n0.793

n n0.774

• Edelsbrunner-Welzl’86 n n0.695

• Haussler-Welzl’87 n n0.667 (rand.)

• Welzl’88 n n1/2 log n
• Chazelle-Sharir-Welzl’92        n1+ε n1+ε n1/2+ε

• Matoušek’92 n log n n n1/2 polylog n

• Matoušek’93 n1+ε n n1/2 

• Chan’10 n log n n n1/2   (rand.)

n1-1/d

(near opt.)



P(n) S(n) Q(n)
• Clarkson’87 n2+ε log n  (rand.)
• Chazelle’93/Matoušek’93 n2 log3 n 

• Trade-off m (n / m1/d) logd+1n
(near opt.)

nd logd+1n



Method 0  (Willard’82)

• “Ham-Sandwich Cut” Thm: Given 2 point sets P & Q in 2D,

∃ line that simultaneously bisects P & Q

• Pf Sketch: Given dir. v, let ℓP = line bisecting P along dir v
ℓQ = line bisecting Q along dir v

“ham” “bread”

v v
ℓP ℓQ ℓP ℓQ

before after



• Corollary: Given n points P in 2D,

∃ 2 lines which partition P into 4 subsets of n/4 points

• Recurse ⇒ “partition tree”
• S(n) = O(n)

• P(n) = 4 P(n/4) + O(n)   ⇒ O(n log n)

Megiddo’85



• Halfplane query:
Q(n) = 3 Q(n/4) + O(1)

⇒ O(nlog4 3) ≈ O(n0.793)

• Triangle query:
Q(n) = O(# cells crossing ∂q)

= O(3 · # cells crossing a line)
= O(n0.793)

• Rmks: work also in 3D (8-partitioning), but not in 5D, …
in 2D, improve by partitioning into > 4 cells??



Method 1  (Dual)

• Def:  Given point p = (a,b), define its dual line p*:  y = ax-b
Given line ℓ: y = αx – β, define its dual point ℓ* = (α, β)

b > αa – β β > aα - b 

given n pts, count pts ⇔ given n lines, count lines
above query line below query pt

p
ℓ

ℓ*
p*

q
q*

⇔



• Lemma: Given n lines in 2D, can cut the plane into 4 cells
s.t. each cell intersects ≤ 3n/4 lines

• Pf Sketch: Say median slope = 0
Let A = lines w. slope < 0

B = lines w. slope > 0
Let ℓA = median level of A

ℓB = median level of B
ℓA

ℓA

ℓB

n/4



• Recurse ⇒ “cutting tree”
• S(n) = 4 S(3n/4) + O(1)   

⇒ O(nlog4/3 4) ≈ O(n4.82)

• Count # lines below query pt:
Q(n) = Q(3n/4) + O(1)   

⇒ O(log n)

• Rmks: more complicated in higher-D… (Megiddo’84/Dyer’86)

in 2D, improve by cutting into > 4 cells??



Method 2  (Clarkson’87)

• Cutting Lemma:  Given n lines in 2D, can cut into O(r2log2r) 
disjoint cells s.t. each cell intersects O(n/r) lines

• Pf: Idea:  “probabilistic method” (“ε-net”-type argument)
Take random sample R of size cr
Return a triangulation T(R) of the arrangement of R

Success if every edge of
T(R) intersects ≤ n/r lines 

“(1/r)-cutting”

by Chazelle-Friedman’90
(bound is tight)



• Fix a line segment uv that 
intersects > n/r lines

• Pr{uv appears in T(R)}
<≈ (cr/n)4 (1 - cr/n)n/r

• Pr{failure}  <≈ n4 · (cr/n)4 (1 - cr/n)n/r

<≈ (cr)4 / ec << 1  

by setting c ≈ 100 log r  Q.E.D.

u

v

> n/r



• Recurse ⇒ cutting tree
• S(n) = Cr2 S(n/r) + O(r2)

⇒ O(nlog(Cr2)/log r) = O(n2 + log C/log r)   ⇒ O(n2+ε) 
by setting r = suff large const

• Halfplane query:

Q(n) = Q(n/r) + O(r2)   ⇒ O(log n)

• Rmks: extends to triangle query by multi-level…
Q(n) = O(polylog n)

in higher-D:  S(n) = Crd S(n/r) + O(rd)  ⇒ O(nd+ε) 



Recap:

• Simplex range searching (2D):
– Method 0 (Willard’s partition tree):

O(n) space,  O(n0.793) time
– Method 1 (cutting tree):

O(n4.82) space,  O(polylog n) query time 
– Method 2 (Clarkson):

improve space of Method 1 to near O(n2)

Next:

– improve time of Method 0 to O(n1/2)??



Method 3  (Matoušek’92)

• Back in primal…

• Partition Thm: Given n pts in 2D, can partition into t subsets 
of Θ(n/t) pts & enclose each subset Pi in a cell ∆i

s.t. any line crosses O(t1/2) cells

[Corollary:  matching & spanning tree w. crossing # O(n1/2)]

“crossing #”
(bound is tight)



• Recurse ⇒ partition tree
• S(n) = O(n)
• Halfplane/triangle query:

Q(n) = Ct1/2 Q(n/t) + O(t)

⇒ O(nlog(Ct1/2)/log t) = O(n1/2 + log C/log t)   ⇒ O(n1/2+ε)
by setting t = suff large const

• Or set t = nε

⇒ O(CO(loglog n) n1/2)  =  O(n1/2 polylog n)

• Rmk: in higher-D:  

Q(n) = Ct1-1/d Q(n/t) + O(t)  ⇒ O(n1-1/d polylog n)



Pf of Matoušek’s Partition Thm

• Suffice to prove crossing # for a finite set L of m “test lines”
(m = O(n2))

• Intuition:
1. Apply cutting lemma to L with r = t1/2

⇒ # cells O(r2) = O(t)
2. Subdivide cells to ensure each has O(n/t) pts

⇒ O(t) extra cuts
3. Total crossings between lines & cells 

=  O(t · m/r)  = O(m t1/2)

⇒ average # crossings per line  =  O(t1/2)

• Challenge: turn average to max??

O(t)



• Idea: “iterative reweighting” (Welzl’88)

• Maintain a multiset L# initially containing L (multiplicity 1)
• For i = t, …, 1 do:   // assume i(n/t) pts remain

1. Apply cutting lemma to L# with r = ci1/2

⇒ # cells O(r2) ≤ i
2. Pick cell ∆i containing ≥ n/t pts
3. Shrink ∆i s.t. it contains exactly n/t pts Pi & remove Pi

4. For each ℓ in L crossing ∆i

double multiplicity of ℓ in L#

• Analysis:
|{ℓ in L# :  ℓ crosses ∆i}|  ≤ |L# | / r   =  O(|L# | / i1/2)

⇒ |L# | increases by a factor of  1 + O(1/ i1/2)

“weight”



⇒ |L# | increases by a factor of  1 + O(1/ i1/2 )

• Final value of |L# |  ≤ m  Πi=t,…,1 [1 + O(1/ i1/2)]

≤ m  exp(O(Σi=t,…,1 1/ i1/2))
=   m  exp(O(t1/2 ))

• Final multiplicity of ℓ =  2crossing # of ℓ

⇒ max crossing #  ≤ log (final value of |L# |)

≤ O(log m +  t1/2)
≤ O(t1/2)       Q.E.D.



New Method  (C’10)

• Idea: instead of recursion, apply iterative reweighting to an 
entire level of the partition tree

• Partition Refinement Thm: Given a partition with t disjoint 
cells each with O(n/t) pts s.t. crossing # is Z,
can subdivide each cell into O(b) disjoint subcells each with 
O(n/bt) pts s.t. overall crossing # is

O((bt)1/2 +  Z  +  b polylog n)



• Repeat level by level  ⇒ partition tree
• Z(bt)  =  O(Z(t)  +  (bt)1/2 +  b polylog n)

i.e., Z(u)  =  C Z(u/b)  +   O(u1/2)

⇒ Z(u)  = O(u1/2)
by setting b = suff large const

• Q(n) =  O(Σt=1,b,b2, … Z(t))  =  O(n1/2)     (no extra logs!)

• Rmk: in higher-D,  

Z(u) =  Cb1-1/(d-1) Z(u/b)  + O(u1-1/d)  ⇒ O(n1-1/d)

ignore



Pf of Partition Refinement Thm

• Refined Cutting Lemma:  Given n lines in 2D & triangle ∆ with 
X intersections inside, can cut ∆ into O(r + X (r/n)2) disjoint 
cells s.t. each cell intersects ≤ n/r lines

complexity of
arrangement of 
sample R of size r



• Maintain multiset L# 

• For i = t,…,1 do:   // assume i cells remain
1. Pick a remaining cell ∆i with Xi ≤ intersections

inside & with mi ≤ lines crossing it
2. Apply cutting lemma to L#, ∆i with r =  

⇒ # subcells O(r + Xi (r/mi)
2)  =  O(b)

3. Further subdivide s.t. each subcell of ∆i has O(n/bt) pts

⇒ O(b) extra cuts 
4. For each ℓ in L 

multiply multiplicity of ℓ in L# by (1+1/b)zi(ℓ)

where zi(ℓ) = # new subcells of ∆i crossed by ℓ

• Analysis:

Σℓ in L# zi(ℓ)  ≤ O(b · mi / r)   ≤ O(b · [(Xi / b)1/2  + mi / b])

O(|L#|2 / i)??

O(|L#| Z /  i)??

min{ mi(b/Xi)
1/2, b } ??



Σℓ in L# zi(ℓ)  ≤ O(b · mi / r)   ≤ O(b · [(Xi / b)1/2  + mi / b]) 

⇒ increase in |L# |  =   Σℓ in L# [(1+1/b)zi(ℓ) - 1]

≤ O(Σℓ in L# zi(ℓ) / b)
≤ O((Xi / b)1/2  + mi / b)
[recall  Xi ≤ O(|L#|2 / i),   mi ≤ O(|L#| Z / i)]
≤ O(|L#| / (bi)1/2 + |L#| Z / (bi))

• Final value of |L# |    ≤ m  Πi=t,…,1 [1 + O(1/ (bi)1/2 + Z / (bi))]

≤ m  exp(O(Σi=t,…,1 [1/ (bi)1/2 + Z / (bi)]))
=   m  exp(O((t / b)1/2 + (Z ln t) / b))



=   m  exp(O((t / b)1/2 + (Z ln t) / b))

• Final multiplicity of ℓ =  (1+1/b)crossing # of ℓ

⇒ max crossing #  ≤ O(b log (final value of |L# |))

≤ O(b log m + (bt)1/2 + Z ln t) Q.E.D.

• Rmk:  P(n) = O(n log n) requires yet more work…

by more work



Recap:

• Simplex range searching:
O*(nd) space, O(polylog n) query time 

or O(n) space, O(n1-1/d) time

Next:

• Extensions & applications…



Extension 0:  Dynamic

• Insertion: the “logarithmic method” (Bentley,Saxe’80)
– Insert by building new subset of size 1

– While ∃ 2 subsets of size 2i

merge by building
new subset of size 2i+1

– Total insert time =  O(Σi (n/2i) 2i log 2i) = O(n log2 n)

⇒ amort. time O(log2 n)

– Query is “decomposable”:  Q(n) = O(Σi(2
i)1-1/d) = O(n1-1/d) 

• Deletion: be lazy…

…



Extension 1:  Trade-Offs

• Combine...

S(n) = O*((n/B) · Bd)
= O*(nBd-1) = O*(m)

by setting B = (m/n)1/(d-1)

Q(n) = O((n/B)1-1/d · polylog B)
= O*(n/m1/d)

partition tree

cutting
tree

cutting
tree

cutting
tree

cutting
tree

B pts B ptsB pts B pts



Extension/Appl’n 2:  Off-Line Problems

• Ex: Given n lines & n pts in 2D, count # of pairs (p, ℓ) s.t. 
point p is above line ℓ (“Hopcroft’s problem”)

O*(m  +  n · n/m1/2)   =  O*(n4/3)

by setting m = n4/3

• Rmks: alg’mic pfs of combinatorial geometry problems
lots & lots of other appl’ns…
(sometimes cutting lemma suffices)
in higher-D,  O*(m  +  n · n/m1/d)   ⇒ O*(n2 - 2/(d+1))



Extension/Appl’n 3:  Multi-Level Data Structures

• Ex A: Count all line segments intersecting query line

• Build partition tree for red pts, where each node stores a 
partition tree for a subset of blue pts (“canonical subset”)

• S(n) = t S(n/t) + O(t · n/t)   ⇒ O(n log n)
• Q(n) = Ct1/2 Q(n/t) + O(t · (n/t)1/2)  ⇒ O*(n1/2)

by setting t = suff large const



• Ex B: Count all line segments intersecting query line segment

• Build partition tree for dual of input lines, where each node 
stores data structure from Ex 1 for a canonical subset

• S(n) = t S(n/t) + O(t · (n/t) log (n/t))   ⇒ O(n log2 n)
• Q(n) = Ct1/2 Q(n/t) + O*(t  · (n/t)1/2)  ⇒ O*(n1/2)

by setting t = suff large const



• Ex C: (Off-line problem)  Given n line segments in 2D, 
count total # intersections

⇒ O*(n4/3)  time alg’m

[Open:  O(n4/3) without extra factors?]



Extension 4:  Non-Linear Ranges

1. By change of variables (“linearization”)

Ex A: 2D disk counting

(x – qx)
2 + (y – qy)

2 ≤ qr
2

⇔ x2+y2 – 2qxx – 2qyy + qx
2+qy

2-qr
2 ≤ 0

⇔ z    – 2qxx – 2qyy +       qz ≤ 0

⇒ 3D halfspace counting:  S(n) = O(n),  Q(n) = O*(n2/3)



Ex B: 2D disk intersection counting

(x – qx)
2 + (y – qy)

2 ≤ (r + qr)
2

⇔ x2+y2-r2 – 2qxx – 2qyy – 2qrr +qx
2+qy

2-qr
2 ≤ 0

⇔ z      – 2qxx – 2qyy – 2qrr +       qz ≤ 0

⇒ 4D halfspace counting:  S(n) = O(n),  Q(n) = O*(n3/4)

2. By directly extending partition thm, using combinatorial 
analysis of arrangements of surfaces (Agarwal-Matoušek’94)

S(n) = O(n), Q(n) = O*(n1-1/b) 

where b = d  if d ≤ 4;  b = min{ 2d - 4,  (d + ℓ )/2 } else

n2/3

# vars after
linearization

# vars



Extension 5:  Halfspace Reporting

• Warm-up: 2D halfspace emptiness

S(n) = O(n)
Q(n) = O(log n)

• 3D halfspace emptiness
– same  (reduces to 2D point location in dual)

convex
hull



3D Halfspace Reporting (C’00)

• Shallow Cutting Lemma:  (Matoušek’92)  Given n planes in 
3D, can cover all “(n/r)-shallow” pts with O(r) disjoint vertical 
cells s.t. each cell intersects O(n/r) planes

For r = 1, 2, 4, … do:
apply cutting lemma for r
store list L∆ of planes 

intersecting each cell ∆

S(n) = O(Σr r · n/r) = O(n log n)

• Query:  take r ≈ n/k
Q(n) = O(log n  + n/r)       =  O(log n + k)

q

point location
to find ∆ (John)

linear search
in L∆



• Rmks: same approach works for 3D dominance reporting…
can reduce space to O(n loglog n) by C’00/Ramos’99

& to O(n) by Afshani-C’09

• Higher-D halfspace reporting:
– By shallow versions of cutting lemma & partition thm
– Matoušek’92 & Ramos’99/Afshani-C’09: 

S(n) = O(n),  Q(n) = O(n1-1/d/2 polylog n +  k) for any d
– C’10:  

S(n) = O(n),  Q(n) = O(n1-1/d/2 +  k polylog n) for even d 
– Open:  O(n1-1/d/2 +  k)?  Same for odd d?  Lower bds?
– Lots of appl’ns: ray shooting, LP queries, exact nearest 

neighbor search, convex hull alg’ms, …



• An Open Problem: off-line halfspace counting for pts in 
convex position in d-D?

The End


