Orthogonal Range Queries:
Basic Methods

Timothy Chan

MADALGO Summer School’10
(Mon. Morning I)

Orthogonal Range Searching

(@) (@) (@)

P(n) =0O(nlogn), S(n)=0(n), Q(n)=0(logn [+ K])

e 2D7??

Method O: k-d Tree

Ps5

e Divide by median-x, 05
* Then by median-y, P
 Then by median-x, Etc. -

3

Ps
b
S(n) =[O(n)

P(n) =2 P(n/2) + O(n)
= | O(n log n)

P1 P3 P2 Pg P7 Pg Ps Pe

e Q(n) = O(# cells crossing 0q)

= O(4 - # cells crossing a line)

" Z(n)

e Z(n)=22Z(n/4) + O(1)
= 0o(n*?

 Rmk: not good!
& worse in higher-D:
Z(n) =291 z(n2% + 0(1) = omn*tY

Method 1. Range Tree

e Store points in sorted y-order
e Divide by median-x only
 Recurse on left & right

by

S(n) = 25(n/2) + O(n)
= O(n log n)

by pre-sorting
P(n) = 2P(n/2) + O(n logn)

= 0O(n Ioggn)

« 3-sided query: - 0
Q3side(n) - Q3side(n/2) + O(l) '
or Qzsige(N/2) + O(log n) — -
N
— QBside(n) = O(|ng n) search in y-sorted list

* General query:
Q(n) = Q(n/2) + O(1)

Or 2 Qgige(Rf2)-+ O(1)

= Q(n) =O(log” n)

by adding pointers between layers
(special case of “fractional cascading”)

O(log® n)

Higher-D

AN RN

i Sd(n) — ZSd(n/Z) + Sd_l(n)

= S4(N) = O(Sq(N)logn) = Sy(n) =0(n log®? n)

* Qq(n) = O(Qy.1(n) log n) = Qq(n) =/O(log™* n)

e RmKs:
— Example of “multi-level” data structure

— Dynamic: query/update time O@log-n) by standard
balanced tree techniques O(Iogd'ln loglog n)
by dynamic fractional cascading

— (Mild) trade-off: by degree-b range tree

S(n) = O(n (logy,m)®™1), Q(n) = O((b log,n)®)
or S(n) = O(n (b logy,n)®™t), Q(n) = O(log n (log,n)®2)

Recap:

e Orthogonal range searching:
O(n Iogd'l n) space, O(Iogd'1 n) time

Next:

* Improvements, by starting with better base cases
(1D, 2D, 3D)??

Orthogonal Range Queries:
3D Reporting

(Mon. Morning 1)

* Goal: 3D reporting
O(n polylog n) space, O(loglog U + k) time?

 Warm-up: 2D dominance emptiness

o 9 . ”
. “staircase
- of maxima

— 1D predecessor search

e 3D dominance emptiness

—

/ “staircase”

of maxima

W = 2D orthogonal point location

Orthogonal 2D Point Location

Store n disjoint rectangles in 2D

s.t. can locate rectangle
containing query pt

[non-orthogonal pt location:
wait till Wed. (John)...]

* Previous methods: (Dietz'89/de Berg-van Kreveld-Snoeyink'95)
O(n) space, O((loglog U)?) time

e Brand new method: (Chan’l1l...)
O(loglog U) time!

Recursive Method: 15t Attempt

 Assume universe is W x H (initially W = H = U)
. Idea: use n*?xn?? grid, like Alstrup-Brodal-Rauhe
(column width W/n'2, row height H/n*'?%)

e For each column/row,

recurse on all rectangles that have .
a vertex inside the column/row

(each rectangle stored < 4 times)

For each grid cell, remember in table —

If it Is covered by a rectangle, or
If a horizontal or vertical edge cuts thru it

Q(n,W,H) :0;1)+ max{ Q(n;, W/n*/?, H),KQ(nj, W, H/n'%)}

locate grid cell 1 recursive call only!

* Q(N,W,H) =0(1) + max{ Q(n;, W/in"? H), Q(n;, W, Hn"?) }

e Rmks:

— as n gets smaller relative to W,H, recursion doesn't
shrink W,H as much...

— could apply rank space reduction to equalize n & W,H
but cost extra loglog factor due to van Emde Boas!

Recursive Method: 2" Attempt

 |dea: Imitate van Emde Boas
divide Into w2 columns
(of width W)

e Build hash table for D = all “honempty” columns

 Recurse w. rounded input + Recurse on universe with
empty columns removed

(universe W< x H) (universe nW*?2 x H)
(each rectangle stored < 2 times)

Q(n,W,H) = O(1) + Q(n, nW¥?2, H)

e Q(N,W,H) = O(1) + Q(n, nw?, H)
e Or Q(n,W,H) = O(1) + Q(n, n, nHY?)

e Rmk: but this recursion can’t shrink W,H to const!

Summary So Far...

e Method 1:

Q(,W,H) = O(1) + max{ Q(n;, W/n"?, H), Q(n;, W, HIn'/?) }
e Method 2a:

Q(n,W,H) = O(1) + Q(n, nW?2, H)
e Method 2b:

Q(n,W,H) = O(1) + Q(n, n, nH?)

* Final Method: just combine!!
—1fn=WY3 & n=HY3 then Method 1
—fn<wW¥3 then Method 2a; If n < H1/3 then Method 2b

Q(,W,H) = O(1) + max{ Q(n;, W, H), Q(n, W, H>°)}

Q(n,W,H) = O(1) + max{ Q(n;, W>°, H), Q(n, W, H>) }
= O(loglog W + loglog H) =|0O(loglog U)

e S(n) = 0(4°°9°9Y)) =Io(n polylog L)

 Rmk: can reduce space to O(n) by more work...

In Conclusion...

e 3D dominance emptiness:
O(n polylog n) space, O(loglog U) time

e 3D dominance reporting:
similarly, w. additional ideas (Tues. afternoon),
O(n polylog n) space, O(loglog U + k) time

= 3D general reporting:
by adding sides w. 3 extra log factors in space,
O(n polylog n) space, O(loglog U + k) time
'can save space by Alstrup-Brodal-Rauhe idea (Karpinski-Nekrich’10)...]

* Higher-D reporting:
by range trees w. d-3 extra log factors in space & time,
O(n polylog n) space, O(Iogd'3 n loglog n + k) time

by degree-b range trees w. b=log® n,
O(n polylog n) space, O((log n/loglog n)d'3 loglog n + k) time
current record query time!

End of Orthogonal Range
Query Upper Bounds

[why not O(loglog U) in 4D?? wait for Tues. (Mihai)...]

Non-Orthogonal Range Queries

(Mon. Afternoon Il +
Tues. Afternoon | + II)

Simplex Range Searching

(@]
(@] ° o
(@]
o °
o o o
o ’ ’
o \
............... o |
O S ©

* An illustrative case: 2D halfplane counting

History in 2D

Willard’82

e Edelsbrunner-WelzI’'86

 Haussler-Welz|'87
 WelzI’'88

e Chazelle-Sharir-Welzl'92
 Matousek’92

e Matousek’93
e Chan’l0

P(n)

n1+s

nlogn

n1+£

nlogn

o2
~

-
N’

0 O O O O O oS o o

1+¢

Q(n)

0.793 <«
0.774
0.695

0.667 (rand.)

1/2 log n

1/2+¢

12 polylogn ——
1/2
1/2

o0 O O O O O O o o

(rand.) =

n1-1/d

(near opt.)

e Clarkson’87
e Chazelle’93/Matousek’93

e Trade-off

P(n) S(n)
n2+£
2
P N
nd
m

Q(n)

logn (rand.) <—

(near opt.)

Method 0 (Willard'82) ot e
N

e “Ham-Sandwich Cut” Thm: Given 2 point sets P & Q in 2D,
[Iline that simultaneously bisects P & Q

« Pf Sketch: Given dir. v, let £, = line bisecting P along dir v

I, = line bisecting Q along dir v
A A

VT before vl after

I AR S

e Corollary: Given n points P in 2D,
[12 lines which partition P into 4 subsets of n/4 points

@)
@)

o o o m
N/

 Recurse = “partition tree”
* S(n) =/0(n)
« P(n)=4P(n/4) + O(n) = O(nlog n)

egiddo’85

Halfplane query:
Q(n) =3 Q(n/4) + O(1)

— O(nlog4 3) ~ O(n0.793)

Triangle query:
Q(n) = O(# cells crossing 2q)

= O(3 - # cells crossing a line)
_ O(n0'793)

Rmks: work also in 3D (8-partitioning), but not in 5D, ...
In 2D, improve by partitioning into > 4 cells??

Method 1 (Dual)

« Def: Given point p = (a,b), define its dual line p*: y = ax-b
Given line £: y = ax — [3, define its dual point £* = (a, B)

() p o Z*
/f / p*
b>o0a-3 - B>aa-b
° ° ° q*
/ q §
given n pts, count pts - given n lines, count lines

above query line below query pt

« Lemma: Given n lines in 2D, can cut the plane into 4 cells
s.t. each cell intersects < 3n/4 lines

o Pf Sketch: Say median slope =0
Let A =lines w. slope <0
B = lines w. slope >0
Let £, = median level of A
{; = median level of B

[/
/)

Recurse = “cutting tree”
S(n) =4 S(3n/4) + O(1)
— O(nlOg4/3 4) ~ O(n482)

Count # lines below query pt:

Q(n) = Q(3n/4) + O(1)
= |O(log n)

Rmks: more complicated in higher-D... (Megiddo’84/Dyer’'86)
In 2D, improve by cutting into > 4 cells??

by Chazelle-Friedman’90

Method 2 (Clarkson’87) (bound is tight) .

e Cutting Lemma: Given n lines in 2D, can cut into O(rzlpg"ﬁ

disjoint cells s.t. each cell intersects O(n/r) lines— _
“(1/r)-cutting”

o Pf. ldea: “probabilistic method” (“e-net”-type argument)
Take random sample R of size cr
Return a triangulation T(R) of the arrangement of R

S if dge of \: i’
uccess if every edge o — ‘
T(R) intersects < n/r lines /

/ \
L/
/] \

* Fix aline segment uv that

intersects > n/r lines)<
\'\

* Pr{uv appears in T(R)} s\\ > nlr

<= (crin)* (1 - crim)™

o Pr{failure} <= n*-(crin)* (1 - Cr/n)”/r
<= (cnt/e® <<1
by setting ¢ = 100 log r Q.E.D.

Recurse = cutting tree
S(n) = Cr? S(n/r) + O(r?)

— O(nlog(CrZ)/Iog r) — O(nz + log Cl/log r) — O(n2+‘°')
by setting r = suff large const

Halfplane query:
Q(n) = Q(n/r) + O(r) = |O(log n)

Rmks: extends to triangle query by multi-level...

Q(n) = O(polylog n)
in higher-D: S(n) = Cr¥ S(nir) + O(rY) = 0O(n%*9)

Recap:

e Simplex range searching (2D):
— Method O (Willard’s partition tree):
O(n) space, O(no'793) time
— Method 1 (cutting tree):
O(n4'82) space, O(polylog n) query time
— Method 2 (Clarkson):
Improve space of Method 1 to near O(nz)

Next:

— Improve time of Method 0 to O(nllz)??

Method 3 (Matousek’92)

e Back in primal...

e Partition Thm: Given n pts in 2D, can partition into t subsets
of ©(n/t) pts & enclose each subset P, in a cell A,

s.t. any line crosses O(t

12 cells

“crossing #”
(bound is tight)

[Corollary: matching & spanning tree w. crossing # O(nllz)]

Recurse = partition tree
S(n) = 0O(n)
Halfplane/triangle query:
Q(n) = Ct/? Qnit) + O(1)

N O(nlog(Ct1 2)/Iog t) — O(nllz + log Cllog t) — O(n1/2+s)

by setting t = suff large const

Orsett=n*

Rmk: in higher-D:
Q(n) = Ct*Y¥ Q(nit) + o) = o' polylog n)

Pf of Matousek’s Partition Thm

o Suffice to prove crossing # for a finite set L of m “test lines”

(m = o)) O(t)

e Intuition:

1. Apply cutting lemmato L withr =t
= # cells O(rz) = O(1)

2. Subdivide cells to ensure each has O(n/t) pts
= O(t) extra cuts

3. Total crossings between lines & cells
= O(t - m/r) = O(m t?)
—> average # crossings per line = O(tllz)

1/2

 Challenge: turn average to max??

ldea: “iterative reweighting” (WelzI’88) “weight”
Maintain a multiset L* initially containing L (multipliéty 1)
Fori=t, ..., 1do: //assume i(n/t) pts remain
1. Apply cutting lemma to L with r = ci'/?

= # cells O(rz) < i
2. Pick cell A, containing 2 n/t pts
3. Shrink A; s.t. it contains exactly n/t pts P, & remove P;
4. Foreach tin L crossing A

double multiplicity of £ in L*

Analysis:
{2in L*: fcrosses A} < |L*|/r = O(L*|/iY?
= |L* | increases by a factor of 1+ O(1/i'%)

= |L* | increases by a factor of 1+ O(1/i'/?)

« Finalvalue of |L¥| < m 1. , 1 +o@i¥?]

< m exp(0(2_, 1/i*?))

= m exp(O(t'?))

Final multiplicity of § = 2€r0ssing #of £

— max crossing # < log (final value of |L* |)
< O(logm + t?)
<

ot'% Q.E.D.

New Method (C’'10)

* |dea: instead of recursion, apply iterative reweighting to an
entire level of the partition tree

e Partition Refinement Thm: Given a partition with t disjoint
cells each with O(n/t) pts s.t. crossing # Is Z,

can subdivide each cell into O(b) disjoint subcells each with
O(n/bt) pts s.t. overall crossing # is

O((bt)ll2 + Z + b polylog n)

Repeat level by level = partition tree
Z(bt) = O@Z(t) + (b)? + bpolylogn)
i.e., Z(u) = CZ(ub) + owu'?

— Z(u) = o@u?

by setting b = suff large const

Q(n) = O(th1,b,b2, Z(t)) = O(nllz) (no extra logs!)

Rmk: in higher-D,
Z(u) = cbME zwp) + ot = omntd

Pf of Partition Refinement Thm

e Refined Cutting Lemma: Given n lines in 2D & triangle A with
X Intersections inside, can cut A into O(r + X (r/n)2) disjoint
cells s.t. each cell intersects < n/r lines

complexity of
arrangement of
sample R of size r

Maintain multiset L”
Fori=t,...,1do: //assume i cells remain
1. Pick a remaining cell A with X, < O([2?|° / i) intersections
inside & with m, < O(|L?PZ / i) lines crossing it
2. Apply cutting lemma to L*, A, with r =r@h{ m,(b/X)*?, b}
— # subcells O(r + X, (fm)?) = O(b)
3. Further subdivide s.t. each subcell of A, has O(n/bt) pts
= O(b) extra cuts
4. ForeachfinL
multiply multiplicity of £ in L¥ by (1+1/b)4®
where z,(f) = # new subcells of A, crossed by {

Analysis:

2, 1+ z(® < Ob -m/r) < Ob-[(%/b)Y? +mib]

- Final value of |L” |

2y 2 < O(b-m/n < Ob - [(%/b)* +m/ b))
— increasein |L*| = 2, # [(1+1/b)F® - 1]

O(ZE in L# Zi(f) / b)

O((X,/ b)Y2 + m./ b)

[recall X,<O(|L*|?/i), m, <O(L* Z/i)]
< O(L¥|/ (biy"* + |L* Z / (bi))

IA IA

IA

m [, ., [1+0@ oi)Y2+2/ (i)

IA

m exp(O(Z, 1 [1/ (b)Y + 2/ (bi)]))
m exp(O((t/ b)Y? + (Z In t) / b))

= m exp(O((t/b)Y2 + (ZInt) / b))

. Final multiplicity of £ = (1+1/p)*"0sSiNg # of £

— max crossing # O(b log (final value of [L" |))
O(blogm + (bt)? +ZInt) Q.E.D.

<
<

by more work

- Rmk: P(n) = O(n log n) requires yet more work...

Recap:
e Simplex range searching:

O*(nd) space, O(polylog n) query time
or O(n) space, O(nl'lld) time

Next:

e Extensions & applications...

Extension 0. Dynamic

* Insertion: the “logarithmic method” (Bentley,Saxe’80)
— Insert by building new subset of size 1

— While 02 subsets of size 2'
merge by building |
new subset of size 2" A A

_ Total insert time = O(2., (n/2i) 7 log 2') = O(n Iog2 n)
|

= amort. time O(Iog2 n)

— Query is “decomposable”. Q(n) = O(Zi(Zi)H/d) =

O(nl-lld\

e Deletion: be lazy...

Extension 1: Trade-Offs

e Combine...

S(n) = O*((n/B) - BY)
= 0*(nBY) = 0*(m)

by setting B = (m/n)*/@1)

partition tree

Q(n) = O((n/B)**9 . polylog B)
tting cutting cutting cdtting _ O*(n/mlld)
free free free free

Bpts Bpts Bpts Bpts

Extension/Appl'n 2. Off-Line Problems

« Ex: Given nlines & n pts in 2D, count # of pairs (p, £) s.t.
point p is above line{ (“Hopcroft’'s problem™)

O*(m + n - n/m1/2) = O*(n4/3)

by setting m = /3

 Rmks: alg’mic pfs of combinatorial geometry problems
lots & lots of other appl’'ns...
(sometimes cutting lemma suffices)
in higher-D, O*(m + n - n/imY%) = 0O*(n?~?/(d*)

Extension/Appl'n 3. Multi-Level Data Structures

« Ex A: Count all line segments intersecting query line

« Build partition tree for red pts, where each node stores a
partition tree for a subset of blue pts (“canonical subset”)

e S(N)=tS(n/t) +O(t-n/t) = O(nlogn)
« Q(n) = CtY2Q(nit) + O(t - (Y% = 0*(n''?)
by setting t = suff large const

Ex B: Count all line segments intersecting query line segment

Build partition tree for dual of input lines, where each node
stores data structure from Ex 1 for a canonical subset

S(n) =t S(n/t) + O(t - (n/t) log (n/t)) = O(n Iog2 n)
Q(n) = CtY2 Q(nft) + O*(t - (ni)?) = O*(n''?)
by setting t = suff large const

« Ex C: (Off-line problem) Given n line segments in 2D,
count total # intersections

= ‘O*(n4/3) time alg’'m

[Open: O(n‘” 3) without extra factors?]

Extension 4. Non-Linear Ranges

1. By change of variables (“linearization”)

Ex A: 2D disk counting
(X = Q) + (y — Cly)2 < qg°
o - X2+y2 _ 2qu _ quy + qx2 + qy2_ qu < O

® o/ [|

o S . _ 7 —20.x-— quy + q, <0

= 3D halfspace counting: S(n) =|O(n), Q(n) = O*(nZ/ 3)

Ex B: 2D disk intersection counting
(x=0q)°+(y—a)* < (r+q)’
X>+y?-17 = 20,X — 20,y — 20,1 40,°+0,°-q,°< 0
| |
VA — 2qxx _ 2qyy — qur t d; <0

= 4D halfspace counting: S(n) =|O(n); Q(n) = O*(n3/4)

2. By directly extending partition thm, using combinatorial

analysis of arrangements of surfaces (Agarwal-MatousSek’94)
2/3
n

S(n) = O(n), Q(n) = O*(n*"*?)

where b=d ifd<4; b=min{2d - 4, L}du{zj}else

vars # vars after
linearization

Extension 5: Halfspace Reporting

 Warm-up: 2D halfspace emptiness

e

O OC r?unl;/ex S(n) = O(n)
I Q(n) = O(log n)

e 3D halfspace emptiness
— same (reduces to 2D point location in dual)

3D Halfspace Reporting (C'00)

« Shallow Cutting Lemma: (Matousek’92) Given n planes in
3D, can cover all “(n/r)-shallow” pts with O(r) disjoint vertical
cells s.t. each cell intersects O(n/r) planes

Q Forr=1, 2,4, ... do:

— apply cutting lemma for r

%q>< ;2 /f\ store list L, of planes
L / I intersecting each cell A

S(n) = O(Zr r- n/r) = ‘O(n log n)

« Query: taker=n/k
Q(n) = O(Io/g n + n(r) = O(log n + k)

point location linear search
to find A (John) InL,

 Rmks: same approach works for 3D dominance reporting...
can reduce space to O(n loglog n) by C'00/Ramos’99
& to O(n) by Afshani-C’09

 Higher-D halfspace reporting:
— By shallow versions of cutting lemma & partition thm
— Matousek’92 & Ramos’99/Afshani-C’09:
S(n) =0O(n), Q(n) = O(nl'llLd/2J polylog n + K) for any d
— C’10:
S(n) = 0(n), Q(n) = O(nl'llLd/2J + k polylog n) for even d
— Open: O(nl'Md/2J + k)? Same for odd d? Lower bds?

— Lots of appl’'ns: ray shooting, LP queries, exact nearest
neighbor search, convex hull alg’'ms, ...

 An Open Problem: off-line halfspace counting for pts in
convex position in d-D?

The End

